The free javascript calculator is used to find empirical rule for the set of values in statistics. The rule states that 68% of the values fall within the first standard deviation, 95% of the values fall within the first two standard deviations, and 99.7% of the values fall within the first three standard deviations of the mean. It is also known as 68-95-99.7 Rule or Three sigma rule.
Features
The empirical rule plays vital role in statistics.
The javascript calculator gives quick estimate for the set of data in a normal distribution.
Fully customizable and mobile friendly script.
It works on all modern browsers.
Just copy the code from textarea and paste it into your webpage/blog.
Preview
Empirical (68-95-99.7) Rule Calculator Script
Downloads
Code
<script LANGUAGE="JavaScript" > function isNum(arg) { var args = arg; var fad = true; if (args == "" || args == null || args.length == 0) { return false; } args = args.toString();var len=args.length; for (var i = 0;i<len;i++) { if (args.substring(i,i+1) < "0" || args.substring(i, i+1) > "9") { if(args.substring(i, i+1) == ".") { if(fad == true) fad = false; else return false; } else { return false; } } } return true; } function calc() {var sds = document.getElementById('dum'); if(sds != null) { var vva = document.getElementById("a11").value; vva = vva.replace(" ",""); var resul; var bb = true; if(vva != "") { resul = vva.split(","); } for(var v=0; v<resul.length; v++) { var d = resul[v]; if(isNaN(d) || d == "") { alert("The number \""+d+"\" is not a valid one"); var bb = false; break; } } if(bb == true) { var tot = resul.length; var mean=0; document.getElementById("r1").value = tot; for(var c=0; c<tot; c++) { mean = mean+parseFloat(resul[c]); } mean = mean/tot; var mean1 = mean.toFixed(1); document.getElementById("r2").value= mean1; var variance=0; var b; var varian; for(var a=0; a<tot; a++) { variance = variance+Math.pow((parseFloat(resul[a])-mean),2); b = tot-1;varian = variance/b; } var sd=0; {